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Abstract

This experiment tests Bayesian persuasion (Kamenica and Gentzkow, 2011) in a

simple setting. We adopt an experimental design in which the Sender chooses a partition

of the state space. We find that 1) the Senders’ strategies generally satisfy the optimal

property that the weaker signal is fully revealing, but 2) their strategies are persistently

suboptimal in the sense that the stronger signal is systematically too weak, resulting

in a high rate of persuasion failure. However, 3) once we replace the Receivers with

a robot who plays a known strategy, most Senders quickly learn to play the optimal

strategy. This suggests that the key strategic element of Bayesian Persuasion is easy

to understand for the Senders, although determining the posterior probability needed

to persuade a human Receiver to take the desired action is a more difficult problem.

We discuss some sources of the difficulty and provide evidence for them.

1 Introduction

In both political and economic realms, there are many settings in which one party attempts

to persuade another party into taking an action by providing information. Among these is

information design, or Bayesian Persuasion (Kamenica and Gentzkow, 2011). In this setting,

the Sender chooses the information structure available to the Receiver, and the Receiver sees

the realization without any distortion.
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As a normative theory, the theory of information design tells us how the Sender can

choose a particular information structure best achieve a certain goal. However, in practice,

choosing an information structure means that the Sender needs to choose from an enormous

set of complicated objects (signal spaces and conditional probability functions). Moreover,

the decision can be further complicated by many other sources of difficulties in real life1. Is

it possible for a real person to solve such a problem? Answering this question is important

in understanding to what extent the theory of Bayesian persuasion is relevant to real-world

phenomena as a descriptive theory.

In this experimental study, we test Bayesian Persuasion in a minimal setting to inves-

tigate, absent all other sources of difficulties, to what extent the key strategic element of

the theory is alive. To minimize all other sources of difficulties that are not essential to the

key strategic element, we design an experiment in which each Sender chooses a partition

of the augmented state space, which Green and Stokey (1978) show is an equivalent way

to represent an information structure to a state-contingent signal distribution. The key fea-

ture of this design is that neither Sender nor Receiver needs to use the Bayes formula to

update their belief implied by a signal realization. This isolates the key strategic element of

Bayesian Persuasion and massively reduces the complexity of the problem without distorting

the meaning of Bayesian Persuasion or restricting the Sender’s choice of information.

To understand how choosing an information partition works, consider a college (Sender)

that wants to induce an employer (Receiver) to hire one of its graduates (as in, e.g., Boleslavsky

and Cotton (2015)). This graduate comes from a pool of 40 good students and 60 mediocre

students in the college. The employer is willing to hire a graduate if and only if the graduate

has a grade that indicates that she is more likely to be a good student than a mediocre stu-

dent. To maximize student placement, the college designs a grading policy that essentially

partitions the student pool into different subgroups characterized by grades (e.g., those who

get Grade A and those who get Grade B).

As it turns out, the college can get the employer to hire more students than the actual

number of good students. The trick is twofold. First, by categorizing many good students as

Grade A, the college can make Grade A a stronger signal (that the student is a good one)

than Grade B. Because the weaker signal (Grade B), which does not induce employment,

has no benefit to the college, it must give all the good students Grade A to ensure that

all the good students are employed. This makes Grade B an unambiguous signal that the

student is only a mediocre one. Second, because the strength of the stronger signal (Grade A)

has no use beyond inducing employment, and because the objective is to maximize student

1For example, both the number of states and the signals can be extremely large, the Sender may not know
how each signal is interpreted by the Receiver, and the Sender may not know the Receiver’s preference, etc..
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placement, the college must also pool some mediocre students into Grade A. This increases

the frequency of Grade A and depresses its strength as a signal, but does not hurt the college

as long as it still induces employment. Thus, in this example, the optimal grading policy for

the college is to give Grade A to all 40 good students and 39 mediocre students (and Grade

B to 21 mediocre students). This way, Grade A induces a posterior slightly higher than 50%

(40/79) and the college can get the employer to hire 79% of its students.

We bring this simple case into the lab to understand how subjects perceive the basic

strategic element of Bayesian persuasion. The optimal strategy of the Sender in this case

always entails two features: 1) he should set the weaker signal to be fully revealing and 2) he

should set the stronger signal just above the cutoff at which the Receiver is willing to take

the Sender’s preferred action. This logic applies regardless of where this cutoff is.

We find that the Senders’ strategies generally satisfy the optimal property that the

weaker signal is fully revealing. However, their strategies are suboptimal in the sense that the

stronger signal is systematically weaker than what the Receivers require to take the Senders’

preferred action, resulting in a persistently high rate of persuasion failure. This comes as a

surprise because setting too low a posterior is a much more costly mistake than setting too

high a posterior. This suggests the Senders may have difficulty in figuring out the posterior

demanded by the Receivers for taking their preferred action.

The strategic uncertainty concerning the Receivers’ decision rules appears to be the only

factor that hinders the Senders from persuading optimally. When the role of Receiver is

played by a robot with a known cutoff strategy, most Senders are able to choose the optimal

strategy. This suggests that Bayesian Persuasion, a supposedly difficult problem, is easy to

understand once all other sources of difficulties that are not essential to the key strategic

element are lifted, although correctly determining what posterior a human Receiver would

demand to take the preferred action remains a challenging problem to human Senders.

We also find that Receivers tend to demand more information to take the Sender’s pre-

ferred action when the information structure is designed by human Senders than when it is

randomly drawn by the computer. This suggests that social preference plays some role in

the Receiver’s decision that makes it even more difficult for the Senders to determine the

Receivers’ decision rule and therefore persuade them optimally.

There are also several other lab experiments studying some applications of bayesian per-

suasion. For example, Aristidou, Coricelli, and Vostroknutov (2019) compare the effectiveness

of information design and mechanism design. They find that the Sender is more successful

in inducing the Receiver to take his preferred action if he provides informational rather than

monetary incentive. Wu and Ye (2022) study competitive persuasion and find that the com-

petition between two Senders can increase information received by the Receiver. Meng and
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Wang (2022) study how information avoidance behavior is affected by whether the informa-

tion source is exogenous or endogenous (i.e., chosen by a Sender) and find that information

avoidance is more prevalent than theoretical prediction.

We believe that Bayesian Persuasion is understudied in the lab partly because it is dif-

ficult to implement in a way that is easily interpretable to inexperienced human subjects.

Consequently, we are unsure whether we can obtain meaningful results from a lab experiment.

Our main contribution to the literature is to show that, by using an experimental design that

exploits the well-understood partition interpretation of information, Bayesian Persuasion can

be massively simplified to a point at which most people can understand. Consequently, our

simple experimental design allows us to get very sharp findings and help us identify several

important behavioral patterns that are not identified in previous experiments.

As a laboratory test of a communication model, our experiment is related to a large exper-

imental literature on cheap talk2 and (verifiable) information disclosure.3 What distinguishes

our experiment from these experiments is that the Receiver should take the “message” from

the Sender at face value because the Sender can neither distort (as in cheap talk) nor hide

(as in information disclosure) the realization of the signal, even if this is against the latter’s

interest.

In our experiment, the Sender essentially chooses a menu of lotteries for the Receiver. To

do this optimally, the Sender needs to correctly predict the Receiver’s risk attitude. Thus,

our experiment is related to studies that examine how one predicts other people’s choices

under risk4. Some studies in this literature find that people predict that others are more

risk-seeking than they actually are. These studies are consistent with our findings that the

Senders set the stronger posterior as if they think the Receivers are more risk-seeking than

they actually are. However, because the evidence is mixed in this line of literature (with

the exception of the common finding that people are not good at predicting other people’s

risk attitudes), and because our setting is different, it is not clear how the findings of these

studies can be applied here.

The rest of the paper is organized as follows. In Section 2, we outline the basic structure

of the experimental design, its theoretical interpretation, and our theoretical predictions. In

Section 3, we report our main results. In Section 4, we briefly discuss the results and how

the design can be extended.

2See, for example, Dickhaut et al. (1995), Forsythe et al. (1999); see Blume et al. (2017) for a survey on
this topic.

3See, for example, Jin et al. (2017), Hagenbach (2018).
4See, for example, Hsee and Weber (1997, 1999) , Siegrist et al. (2002), Eckel and Grossman (2008)
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2 Experimental Design

2.1 Part 1: Persuasion Game

The basic structure of our persuasion game is summarized as follows. In each round of the

game, a Sender (Role 1) is randomly matched with a Receiver (Role 2). The roles are fixed

throughout the experiment. The task that the two parties face concerns the color of a ball

randomly drawn. The Sender’s goal is to induce the Receiver to guess Red, whereas the

Receiver’s goal is to guess the color of the drawn ball correctly.

The persuasion game consists of four steps.

Step 1 : A ball is randomly drawn among 40 red balls and 60 blue balls. Neither the

Sender nor the Receiver knows the color of this drawn ball until the end of a round.

Step 2 : The Sender chooses how to divide the 100 balls into two boxes, Box A and Box

B5. Note that, at this point, exactly one box must contain the drawn ball in Step 1.

Step 3 : After the Sender’s decision, Box A or Box B, whichever contains the drawn ball,

is assigned to the Receiver. The composition of the assigned box (the numbers of red and

blue balls) is revealed to the Receiver.

Step 4 : The Receiver submits a guess about the color of the drawn ball. Note strategy

method is used in this step to elicit the Receiver’s response to each box regardless of the

realization of boxes.

Some justification for the design is worth noting. In the Kamenica and Gentzkow (2011)

setting, the Sender chooses a state-contingent signal distribution, which is defined as a map-

ping from the payoff relevant state space to the set of signal distributions. Here in our

persuasion game, the Sender chooses a partition of the state space (i.e., the 100 balls) that

has both the payoff relevant dimension (i.e., the color of the drawn ball) and the payoff irrel-

evant dimension6 (i.e., the identity of the drawn ball). Green and Stokey (1978) show that

these are two equivalent representations of information structure and in fact, both notions

are used in Bayesian Persuasion literature (e.g., Brooks et al. (2019)). Thus, the Sender in

our persuasion game indeed faces a Bayesian persuasion problem.

This partition representation of information directly reflects Bayesian updating. To see

this, note that in the beginning, each of the 100 balls is equally likely to be the drawn ball.

Suppose after the Sender chooses a partition, the Receiver is assigned Box A so that she

knows that Box A contains the drawn ball for sure. Although this information rules out the

5In practice, he chooses how many red balls and blue balls to be put into Box A. Then, all the rest of the
balls are automatically put into Box B.

6The payoff irrelevant dimension is needed and should be rich enough to allow the Sender to freely choose
how states and signals are correlated.
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balls in Box B being the drawn ball, it does not change the fact that each ball in Box A

is still equally likely to be the drawn ball, which is exactly what is required by Bayesian

updating. The fact that our experiment directly reflects the process of Bayesian updating

makes the Sender’s action highly interpretable and, more importantly, enables the Sender to

choose the distribution of posteriors directly. Specifically, the probability that a box contains

the drawn ball is simply the number of balls put in this box divided by 100, and the posterior

belief that the drawn ball is red given a box is simply the fraction of red balls in this box.

The Bayes plausibility constraint that the expected posterior probability must be equal to

the prior probability is automatically satisfied.

Payoff : The Sender gets a payoff of HK$70 if the Receiver guesses Red and a payoff of

HK$0 otherwise. The Receiver’s payoff depends on a treatment variable L ≥ 1, and it is

summarized as follows7:
HK$40 if the guess is correct and the color is Red

HK$40L if the guess is correct and the color is Blue

HK$0 otherwise

That is, the Receiver’s payoff is HK$0 whenever the guess is incorrect. But when the Receiver

guesses correctly, the prize of a correct Red guess can be different from the prize of a correct

Blue guess. The higher the L, the larger the prize of a correct Blue guess, and therefore the

more inclined the Receiver is to guess Blue at each posterior belief.

Feedback : At the end of a round, each subject is told how the Sender divides the balls,

how the Receiver guesses under each box, the actual color of the drawn ball, the box that is

actually assigned, and his or her own payoff.

2.2 Part 2: Individual Task

After the persuasion game, each subject faces an individual task depending on his or her

role in the persuasion game. In this individual task, if the subject is a Sender, he guesses

what the Receivers have guessed in a previous (randomly drawn) round of the persuasion

game, and his goal is to match the guess of the Receiver’s guess in that round. The purpose

of this task is to understand the Sender’s belief about the Receiver’s response. If the subject

is a Receiver, she again guesses the color of the drawn ball in a previous (randomly drawn)

7A popular payoff scheme used by authors such as Frechette et al. (2022) equalizes the rewards for correct
Red and Blue guesses but varies the punishment for incorrect Red and Blue guesses. We choose our payoff
scheme over that popular one because we believe ours makes the Receiver’s problem look simpler from the
Sender’s perspective.
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round of the persuasion game, and her goal is still to match the color of the drawn ball. The

purpose of this task is to understand what the Receiver would have guessed if her action had

no influence on the Sender’s payoff.

The individual task consists of three steps:

Step 1 : For each subject, we construct the set of rounds of persuasion game in the same

session in which this subject did not participate, that is, the set of rounds played only by

other subjects in the same session.

Step 2 : From this set, we randomly pick a round and replicate its Step 1-3: we randomly

draw a ball from the 100 balls, divide the 100 balls into two boxes as the Sender of that

round has done, and assign the box that contains the drawn ball to the subject. Similar to

the persuasion game, the strategy method is used in this step to elicit the subject’s response

to each box regardless of the realization of boxes.

Step 3 : If the subject has played the persuasion game as a Sender, he needs to guess the

choice of the Receiver in that round when presented with the box. If the subject has played

the persuasion game as a Receiver, she needs to guess the color of the drawn ball given that

the drawn ball is in that box (the same task as in the persuasion game).

Payoff : The Sender gets a payoff of HK$40 if his guess about the Receiver’s choice is

correct and a payoff of HK$0 otherwise. The Receiver’s payoff structure is the same as the

persuasion game and also depends on the treatment variable L. Unlike the persuasion game,

neither the Sender nor the Receiver has any influence on another subject’s payoff in this

part. Note that because the rounds faced by subjects in this part are those they have not

participated in, they could not use their feedback information in the persuasion game to

improve their decisions in this part.

Feedback : At the end of a round, the Receiver gets the same feedback as in the persuasion

game, but the Sender is not provided any feedback, which may influence his belief about the

Receivers’ behaviors.

2.2.1 Theoretical Predictions

After being shown the composition of the drawn box, the Receiver decides between guessing

red or blue, each of which represents a lottery. It is immediate, though noteworthy, that

the only payoff-relevant factors for her are the lotteries themselves. Neither the identity of

the Sender, nor Whether her decision affects the Senders’ payoff, are payoff-irrelevant to the

Receiver. Conditional on the composition of the drawn box, a perfectly-rational Receiver

would therefore behave identically in both the individual tasks and the persuasion game.

Given the Receiver’s payoff structure, it is easy to verify that L is the threshold likelihood
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ratio at which a risk-neutral Receiver is indifferent between guessing Red and guessing Blue.

More precisely, the Receiver collects a higher expected payoff by guessing Red if and only

if Pr(Red)/Pr(Blue) ≥ L (or, equivalently, Pr(Red) ≥ L/(1 + L) in terms of the posterior

probability.)

Importantly, when L = 1, guessing the more likely color stochastically dominates guessing

the other color, and therefore the cutoff posterior is 50% regardless of risk attitude. However,

when L > 1, the prize from a correct Blue guess is larger than the prize from a correct Red

guess, thus raising the cutoff posterior above 50%. As a risk-averse Receiver may choose a

small prize with a high probability over a large prize with a small probability, her cutoff

posterior for choosing Red is lower than that of a risk-neutral Receiver. In contrast, the

cutoff posterior of a risk-loving Receiver is higher than a risk-neutral Receiver.

Prediction 1: The Receiver should base her guess only on the proportion of red balls

in the drawn box. Moreover, she follows a cutoff strategy: guessing red if and only if the

posterior (that the drawn ball is red) of the box is no less than some threshold. Moreover,

this cutoff is increasing in L.

For the Sender, the problem is more complicated, so for ease of exposition, we introduce

some definitions. As the overall fraction of the red balls is equal to the prior probability, if

one box has a fraction higher than the prior, the other must have a fraction lower than the

prior. Throughout, we will call the former box the stronger box and the latter box the weaker

box. We will call the corresponding posterior belief the stronger posterior and the the weaker

posterior, respectively.

As the weaker posterior is below the prior, it has no hope of persuading a rational Receiver

to guess red. The only hope for successful persuasion lies in the stronger box. As such, any red

ball left in the weaker box is essentially ”wasted.” Transferring the red ball to the stronger

box raises the strength of the stronger box, as well as its frequency of being drawn. This

results in a (weak) improvement in the probability of successfully persuading the Receiver

to guess red.

Prediction 2: The Sender always puts all the red balls in the stronger box. That is, the

weaker posterior should be equal to 0.

While the Sender has the option of putting only red balls in the stronger box, thus making

the stronger posterior 1, he can improve his chance of successful persuasion by putting some

blue balls in the stronger box, as long as the stronger posterior is kept above the Receiver’s

cutoff. This works by raising the likelihood of the stronger box being drawn, and hence a

red guess is made by the Receiver. In fact, if the Receiver’s cutoff strategy is known to

the Sender, the latter’s optimal strategy that maximizes the likelihood of persuasion has

the stronger posterior just enough to induce a red guess. Even if the Receiver’s cutoff is
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not known to the Sender, the Sender can secure a red guess following the stronger box by

completely separating the red balls and the blue balls, thus inducing an (ex-ante) probability

of red guess that coincides with the prior probability.

Prediction 3: The Sender should put some blue balls in the stronger box in addition

to all the red balls so that the stronger box is just enough to induce the red guess. Conse-

quently, the stronger box always induces a red guess by the Receiver. Moreover, the (ex-ante)

probability of the red guess is no lower than the prior probability.

A crucial message of Prediction 3 is that in equilibrium, the stronger posterior offered

by the Sender always succeeds in persuasion. In setting the stronger posterior, the Sender

faces a discrete jump in his payoff around the Receiver’s cutoff: when the stronger posterior

is slightly above the cutoff, the Sender induces the red guess with the highest probability;

but when the stronger posterior is slightly below the cutoff, the Sender induces the red guess

with probability 0. Thus, it is usually more costly for the Sender to set the stronger posterior

too low than to set the stronger posterior too high.

2.3 Treatments and Procedure

Table 1 summarizes the treatments of the experiment. In each treatment, the subjects face

two values of L in a session, 10 rounds for each value L in each part. That is, for the treatment

with both the persuasion game and the individual task (Treatment 1), each session has 20

rounds of persuasion game and 20 rounds of individual task, with 10 rounds for each value

L. For the treatments with the persuasion game only (Treatment 2 and 3), each session has

20 rounds of persuasion game, also with 10 rounds for each value of L.

Table 1: Treatments

Receiver L Theoretical Prediction Sessions (No. of Subjects)
Treatment 1 Human 1; 3 (40, 39); (40, 13) 4 (16, 20, 20, 16)

3; 1 (40, 13); (40, 39) 4 (20, 12, 20, 16)
Treatment 2 Robot 1; 3 (40, 39); (40, 13) 1 (14)

3; 1 (40, 13); (40, 39) 1 (17)
Treatment 3 Random Robot 1; 3 (40, 26); (40, 7) 2 (18, 14)

We recognize that the case of L = 1 is an interesting but knife-edge case where the best

response of the Receiver is independent of her risk attitude. Thus, we also include the case

of L = 3 to see whether there is any qualitative difference compared to the L = 1 case.

Adopting a within-subjects design allows us to determine whether the Sender has a robust

understanding of the problem and how responsive Senders are to the change in the incentive

faced by the Receivers.
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In Treatment 2, we replace the human Receivers with a robot Receiver. Unlike a human

Receiver, a robot Receiver plays a cutoff strategy known to the Sender: the robot guesses

Red if and only if the fraction of the red balls in the urn it receives is higher than a publicly

announced x, where x solves L = x/(1 − x). This robot treatment serves as an important

benchmark for testing, absent strategic uncertainty from the Receiver side, whether the

Senders can design information optimally. Note that in this treatment and the next, we do

not include the Sender’s individual task as there is no meaningful belief about the Receiver

to elicit.

In Treatment 3, we introduce a different robot Receiver that still guesses Red if and

only if the fraction of the red balls is higher than a certain cutoff, but the cutoff is not

revealed to the subjects. Specifically, this cutoff is drawn from the uniform distribution

U(x, x+0.1), which is publicly announced. This treatment (which has random cutoffs drawn

from a known distribution) can be viewed as a middle case between Treatment 1 (which has

cutoffs determined by human Receivers) and Treatment 2 (which has deterministic cutoffs).

It is straightforward to verify that in this treatment, for each x, it is always the best response

to set the stronger posterior at x+0.1, which reflects the fact that it is generally more costly

for the Sender to set the stronger posterior too low than too high8. Note that in this treatment

there is no obvious anchor that provides any hint to the Sender about the optimum strategy.

It is worth remarking that in both Treatment 2 (Robot) and Treatment 3 (Random

Robot), the Sender is essentially facing a single-agent decision-making problem. Moreover,

given the robot behaviors we specify, the optimal choice of the Sender satisfies the prescrip-

tion in Prediction 2, 3, and 4 in the previous section. Comparison across these treatments

allows us to study the effect of strategic uncertainty (arising from the Receiver’s choices) on

Senders’ behaviors.

We ran our experiment online in December 2021 and March 2022. Subjects were recruited

through emails and were predominantly undergraduate students at HKUST. Each session

included 12-20 subjects. At the beginning of a session, the experimenter read the instructions

aloud to the subjects. Then, the subjects played 2 practice rounds, with 1 round for each L.

In the Human Receiver treatments, the subjects played both the role of Sender and Receiver

in these practice rounds. That is, they chose a strategy as a Sender and reacted to it as the

Receiver. The purpose of this design is to let all the subjects gain a better understanding of

the problem each role faces, while preventing them from learning how to play the game from

others. In the two Robot Receiver treatments, the subjects simply played as the Sender for

two rounds. After the practice rounds, the subjects played 10 rounds for each L, with the

8To show this, simply note that the probability of Red guess 0.4
p

p−x
0.1 is increasing in p within [x, x+ 0.1]
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role of each subject being fixed throughout the session. Each session of the Human Receiver

treatment lasted approximately 90 minutes and each session of the two Robot Receiver

treatments lasted approximately 75 minutes. For every 10 rounds of each part, we randomly

picked one round for the payment in addition to a HK$75 participation fee. This resulted in

an average payment of about HK$225 for each subject in the Human Receiver treatments

and HK$148 in the two Robot Receiver treatments.

Figure 1: Screenshot of Sender’s Interface in Treatment 1

It is worth mentioning how the Sender’s problem is exactly presented as we are interested

in how he solves it. Figure 1 is a screenshot of the Sender’s interface in Treatment 1. As the

screenshot shows, the Sender chooses how many Red and Blue balls to put in Box A by

moving two sliders. To reduce possible anchoring effects, each slider is programmed so that

it does not appear on the slider bar until the Sender clicks on the slider bar. To make the

relative number of Red and Blue balls put in Box A clear to the Sender, the length of

each slider bar is set proportional to the total number of balls of the corresponding color.

Whenever the Sender moves a slider, the interface automatically calculates how many balls of

each color are put in Box B and all the relevant probabilities. The results of these calculations

are shown to the Sender in real time. In the lower half of the Sender’s interface, we show

the Sender the problem faced by the Human Receiver exactly as is presented to the latter in
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Treatment 1. In Treatment 2 and 3, this area displays the statement of the Robot Receiver’s

strategy. Appendix B has the full instructions of the experiment.

3 Results

3.1 Receiver’s Behavior

We start with a discussion of the Receivers’ behaviors in the Human Receiver treatments.

Choosing between guessing red or blue is equivalent to deciding which corresponding lottery

to pick. Establishing the regularity of the Receiver’s behavior is important for us to evaluate

the performance of the Senders in the Human Receiver treatments, and compare with that

in the two Robot Receiver treatments.

Figure 2: Receiver Aggregate Response

(a) L = 1 then L = 3 (b) L = 3 then L = 1

Figure 2 depicts the aggregate response of the Receivers to different levels of posterior.

It shows that, regardless of the order of L,9 for each L, the aggregate probability of the

red guess increases continuously in the posterior belief.10 Furthermore, when the posterior

is lower than 0.5, almost no Receiver guesses Red regardless of L, which is a reasonable

response. Thus, the only interesting region of posteriors is [0.5, 1].

9Our probit regressions show that there is only slight order effect when L = 1.
10In Figure 2, there is some non-monotonicity within the interval [0.9, 1] We attribute this non-monotonicity

to the lack of data because, as is noted in Section 3.4, the posteriors within this region are unpopular choices
among the Senders.
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Within this region, Receivers are generally responsive to the change in L. To show this,

we partition this region into two subintervals ([0.5, 0.75) and [0.75, 1]) and test whether

the average frequency of red guesses in each subinterval differs across L. Table 2 shows

the frequency of the Red guesses in each subinterval under each L. We see that there is a

significant difference in the frequency of Red guesses between L’s in [0.5, 0.75) but less so in

[0.75, 1]. This is reasonable because most Receivers guess Red for sufficiently high posteriors.

Table 2: Frequency of Red Guess in Each Subregion

L = 1 then L = 3 L = 3 then L = 1
[0.5, 0.75) [0.75, 1] [0.5, 0.75) [0.75, 1]

L = 1 67.56% 92.68% 72.52% 100%
L = 3 47.11% (−20.45%∗∗∗) 87.36% (−5.33%) 58.60% (−13.92%∗∗) 91.11% (−8.89%∗)

Difference with the previous row reported in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01 (Two Sided t-Test, Clustered at the Receiver Level).

However, when L = 1, a significant portion of Receivers guess Blue under a posterior

slightly higher than 50%, although doing so is stochastically dominated. This cannot be

explained by random decision error (e.g. Quantal Response)11 because the Receiver’s payoff

from guessing Red at a posterior slightly lower than 50% is symmetric to that from guessing

Blue at a posterior slightly higher than 50%, and yet when the posterior is slightly lower

than 50%, they almost always guess Blue. This asymmetric response of the Receivers around

50% is robust and is also found in our previous drafts (Au and Li, 2018, Kwon, 2020) with

different subject pools. It is an indication that Receivers have some behavioral bias in our

environment that is unrelated to their ability of Bayesian updating.12 As the results in our

next subsection show, there is some evidence that this phenomenon is related to subjects’

social preferences. Another possible cause of this phenomenon is a Receiver’s bias toward

the prior probability (that the drawn ball is Red with a 40% probability) because the ball is

drawn before Sender’s ball division.

When L = 3, a risk-neutral Receiver would guess Red if and only if the posterior is higher

than 75%, but from Figure 2, we see that more than half of the Receivers guess Red within

the posterior region [0.6, 0.7]. Their behavior is consistent with risk aversion, as they choose

a 70% chance of getting a small prize over a 30% chance of getting a large prize even though

the former is lower in expectation.

11See Appendix A for full description of our Quantal Response Equilibrium (QRE) estimation.
12In Frechette et al. (2022), there is a treatment theoretically identical to our L = 1 treatment, but the

Receivers are required to do Bayesian updating. In that treatment, in our terminologies, the Receiver’s
frequency of guessing Red increases slowly in the posterior probability and does not exhibit any asymmetry
in response around 50%. We believe that the reason why their findings differ from ours is that the Receiver’s
failure of Bayesian updating is so severe that it makes it impossible to detect any other behavioral bias.
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Result 1: Receivers respond monotonically to posterior and L. When L = 1, most of

the Receivers guess Red when the posterior is higher than 50%, although their response is

sharply asymmetric around 50% posterior. When L = 3, most of the Receivers guess Red

when the posterior is higher than 60%, indicating risk aversion.

Table 3: No. of Receivers Compatible with Cutoff Strategies

L 0 Violation ≤ 2 Violations (Above) ≤ 2 Violations (Below)
L = 1 then L = 3 1 47.22% 75% 88.89%

3 55.56% 86.11% 80.56%
L = 3 then L = 1 1 61.76% 88.24% 85.29%

3 47.06 91.18% 82.35%

At the individual level, does a Receiver play a cutoff strategy? This question is important

as the optimality of the Sender’s strategy derived in Section 2.2.1 relies on the Receivers

playing cutoff strategies. To answer this question, for each Receiver and L, we look for the

highest posterior at which she guesses Blue,13 and then we count how many times she guesses

Red at a lower posterior. Similarly, we look for the lowest posterior at which she guesses Red

and count how many times she guesses Blue at a higher posterior. This way, we obtain

two measures of violations of the cutoff strategies that will coincide with each other if the

Receiver strictly follows a cutoff strategy. Note that the two measures are very demanding.

For example, if once by error a Receiver guesses Red under a weak posterior, we are likely

to record many instances of her violation of the cutoff strategy. Table 3 shows that for each

L, most Receivers have less than 2 violations both from above and below. In fact, more than

54.28% (51.43%) of the Receivers pass the even more demanding requirement to have no

violation at all when L = 1 (L = 3). Thus, Receivers are generally consistent with a cutoff

strategy.

Figure 3 shows the distribution of the lowest posterior with a Red guess. Although Re-

ceivers are mostly compatible with cutoff strategies, they do not use the same cutoff, which

is the reason why the aggregate response is a continuously increasing function rather than

a step function. In particular, when L = 1, most Receivers set their cutoffs around 0.5, but

31.42% of them still have estimated cutoffs higher than 0.55. This explains why the aggre-

gate response is very steep around the region [0.5, 0.55] but does not go all the way to 100%

guessing red when the posterior is slightly higher than 0.5. Moreover, the average Receiver

cutoff is higher at a higher value of L (the Wilcoxon ranksum test, p < 0.01), consistent with

the theoretical prediction.

13If a Receiver empirically only guessed Blue, we take this posterior as 1.

14



Figure 3: Distribution of Lowest Posterior with Red Guess by L

(a) L = 1 (L = 1 then L = 3) (b) L = 3 (L = 1 then L = 3)

(c) L = 1 (L = 3 then L = 1) (d) L = 3 (L = 3 then L = 1)

Result 2: Receivers generally follow cutoff strategies at individual level. Despite facing

the same payoff function, there is significant heterogeneity in the cutoffs across Receivers.

Moreover, the cutoffs are higher at L = 3 than L = 1.

The fact that in general, Receivers play cutoff strategies at the individual level means

that, as is argued in Section 2.2, the optimal strategy of the Senders is to put in one box all

the red balls plus some additional blue balls depending on the Receivers’ responses. On the

basis of these observations, we estimate the empirical best response of the Senders to the

Receivers’ strategies. For each L of the human treatment, we estimate the probability that

the Sender can persuade a random Receiver in our experiment under the assumption that

1) he puts all the red balls in the stronger box and 2) he sets the posterior of the stronger

box to be some p in [0.4, 1]. 14 Note that the number of red balls put in the stronger box and

the stronger posterior together completely define a Sender’s strategy.

Figure 4 shows the estimated persuasion rate as a function of the stronger posterior p,

with × indicating the theoretical benchmark of a risk-neutral Receiver for each value of L.

When L = 1, the estimated persuasion rate increases continuously from 0.4 to 0.6, beyond

which it descends gently. When L = 3, it climbs continuously from 0.4 to 0.7, and remains

14More specifically, for each p ∈ [0.4, 1] and for each Receiver we look at her action under her nearest
observed posterior. We take the percentage of Red guesses under this p as our estimate.
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Figure 4: Estimated Expected Persuasion Rate

(a) L = 1 then L = 3 (b) L = 3 then L = 1

more or less flat in the region above 0.7. In both cases, the empirical best response requires

the Sender to set the stronger posterior at a point that can persuade most Receivers to guess

Red. Equally importantly, we find that the estimated persuasion rate function is steeper

on the left of the peak than the right. That is, under-informing Receivers is generally more

costly than over-informing. This is reasonable because setting the stronger posterior lower

than the Receiver’s cutoff will never lead to persuasion. But setting the stronger posterior

higher than her cutoff will only result in a lower frequency of the stronger posterior. This

asymmetry of response leads to a kink in the expected persuasion rate function.

Result 3: Given the Receiver’s strategy, the empirical best response generally requires

the Sender to set the posterior high enough to persuade most Receivers.

3.2 Receiver’s Behavior in Game vs. Individual Decision

In this subsection, we compare the Receiver’s response when they can influence the payoff

of the Sender against that when they cannot. Recall that in our Human Receiver treatment,

after the subjects finish playing the persuasion game, the Receivers are given an additional

individual task in which they face an essentially identical lottery choice problem between

guessing Red and guessing Blue as in the persuasion game, with one crucial difference.

Specifically, in the individual task, the ball allocations of the boxes (i.e., the lottery problems

facing the Receiver) are taken from the persuasion games that have already finished, and

consequently, the Receiver’s choices do not carry any externality. We use the Receivers’
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choices in this individual task as a proxy of how Receivers would have acted were they

cannot influence the Sender’s payoff in the persuasion game. For effective comparison, we

keep the framing of the decision problem as similar as possible to the persuasion game

because the past literature has warned that the framing of the problem can heavily influence

peoples’ decisions under uncertainty.

If the Receiver’s choices are guided only by his own material payoff, she should form her

guess based solely on the posterior she faces. Her choice behaviors in the individual task

should thus be identical to those in the persuasion game (condition on the proportion of red

balls in the drawn box). However, the fact that the Receiver’s action is able to influence the

payoff of both the matched Sender and herself in the persuasion game, whereas this ability

is absent in the individual task, suggests the possibility of reciprocation in the persuasion

game. Specifically, in deciding whether to guess red and thus reward the Sender, a Receiver

may take into account her perception of the matched Sender’s kindness or hostility inferred

from the Sender’s offer of information.

Figure 5: Receiver Response Comparison (Persuasion Game vs. Individual Task) by L

(a) L = 1 (L = 1 then L = 3) (b) L = 3 (L = 1 then L = 3)

(c) L = 1 (L = 3 then L = 1) (d) L = 3 (L = 3 then L = 1)

Figure 5 plots the Receivers’ aggregate response in the persuasion game with that in the

individual task for each value of L. By direct inspection, it is apparent that for both values

of L and almost all posterior levels above 0.5, the Receivers guess red more often in the

individual task than in the persuasion game. Moreover, this difference is more pronounced
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for the case of L = 3 than L = 1.15

Figure 6: Lowest Posterior with Red Guess Comparison (Persuasion Game vs. Individual
Task) by L

(a) L = 1 (L = 1 then L = 3) (b) L = 3 (L = 1 then L = 3)

(c) L = 1 (L = 3 then L = 1) (d) L = 3 (L = 3 then L = 1)

Figure 6 provides an alternative perspective on the comparison. It contrasts the distri-

bution of the lowest posterior under which a Receiver guesses Red. The figure shows that

in both cases of L = 1 and L = 3, the cutoffs of the Receivers are generally lower in the

individual task than in the persuasion game. In other words, the Receivers are generally

more demanding in the persuasion game, requiring a stronger posterior to be persuaded.

Notably, significantly more Receivers are contented with a posterior in the region [0.5, 0.55]

in the individual task than in the persuasion game, especially when L = 1.

Table 4 compares the Receivers’ behaviors between the individual task and the persuasion

game, under the condition that the proportion of red balls in the drawn box is no less than

50%. We focus on this region of posteriors because posteriors below 0.5 almost always fail

to persuade. When L = 1, conditional on the posterior no less than 0.5, the proportion of

red guesses is 81% in the individual task, which is above the 76% in the persuasion game.

The difference is significant with p-value equal to 0.04 under two-sample test of proportions.

When L = 3, the corresponding proportions are 77% and 64% respectively, and the difference

is significant with p-value equal to 0.00. The same pattern is preserved when pooling the

15The order of L affects neither the frequency of the Red guesses nor the treatment effect significantly.
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sample across both values of L, as long as we focus on those boxes with more than 50% of

red balls.

Table 4: Comparison of Receiver’s Guess in Persuasion Game vs. Individual Task

Persuasion Game N Individual Task N Proportion test

Guessing Red p-values

Pooled 0.31 2800 0.34 2800 0.01**

(0.01) (0.01)

Pooled & Proportion of Red>0.5 0.70 1181 0.79 1173 0.00***

(0.01) (0.01)

L = 1 & Proportion of Red>0.5 0.76 593 0.81 585 0.04**

(0.02) (0.02)

L = 3 & Proportion of Red>0.5 0.64 588 0.77 588 0.00***

(0.02) (0.02)

Notes: Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

Column 1 of Table 5 reports the probit regression on guessing red, controlling for fac-

tors including the proportion of red balls, session, and round effects. The marginal effect

coefficients of the probit regression confirm the results of the t-test that subjects are more

likely to guess red in the individual task. Columns 2 and 3 report the regression results

conditional on the value of L, and the proportion of red balls in the drawn box exceeding

0.5. The results are consistent with the t-tests. Receivers are less inclined to guess red in the

persuasion game, and this effect is more significant in the case of L = 3. Summarizing the

findings above,

Result 4: Receivers are less likely to be persuaded to guess red in the persuasion game

than in the individual task. This effect is more significant in the case L = 3.

As the Receivers face an identical monetary payoff structure in the individual task and the

persuasion game, the difference in behaviors across the two settings can only be attributed to

their concerns about the Senders’ payoffs. The finding that the Receivers in our experiment

react more unfavorably to intermediate posteriors when supplied by the Senders than when

drawn by the computer suggests that they may have other-regarding preference. Intuitively,

if the ball allocation involves less mixing of red and blue, the realized posteriors are more

spread out (with the stronger posterior closer to 1), allowing the Receiver to make a more

informed decision and thus enjoy a better expected payoff. This, however, lowers the chance

of a red guess, thus hurting the Sender. A more separating ball allocation (equivalently, more

revealing signal structure) therefore can be interpreted as a transfer of expected payoff from

the Sender to the Receiver. A Receiver may therefore perceive the Sender as hostile if he
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Table 5: Determinants of Receiver’s Red Guess

Dependent variable: Guessing Red

(1) Pooled (2) L = 1 & Red>0.5 (3) L = 3 & Red>0.5

Proportion of Red 1.38*** 1.12*** 1.49***

(0.13) (1.47) (0.20)

Individual Task 0.05*** 0.22* 0.14***

(0.02) (0.13) (0.04)

L Dummy -0.10***

(0.02)

Session 0.01 0.07* 0.02

(0.01) (0.04) (0.01)

Round -0.00 0.02 -0.01*

(0.00) (0.01) (0.00)

Number of Balls -0.00* -0.01 0.00

(0.00) (0.01) (0.00)

N 5600 1178 1176

Pseudo R2 0.58 0.15 0.20

Notes: This table reports the marginal effect coefficient estimates of the probit regression on the determinants of guessing
red. Random-Offer is a dummy that equals 1 when the offer is random, zero otherwise. L dummy equals 1 when L=3, zero
otherwise. Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

offers less informative posteriors (than what she is ”justly entitled to”), whereas she may

perceive the Sender as kind if he offers more informative posteriors. To penalize Senders

who are perceived as hostile, the Receiver may opt for a blue guess despite incurring some

loss in expected payoff. Receivers who attempt to reciprocate would thus demand a higher

cutoff posterior for a red guess than that implied by self-interest calculation. Consequently,

compared with their decisions in the individual task, Receivers are less inclined to guess red

following less informative posteriors (e.g., those only slightly above 0.5) in the persuasion

game.

A crucial element in the theory of reciprocation is the players’ perception of their “just”

entitlement of payoff. The finding that the Receivers become more demanding from the

Senders in the case L = 3 may arise because when the stake gets large, the Receiver’s

payoff becomes more sensitive to the Sender’s offer of information.16 This heightened payoff

sensitivity may bring about a larger impact on the Receiver’s perception of entitlement,

driving up the wedge between the cutoff demanded and the self-interest cutoff. In fact, under

16Restricting to the class of signal structure with posteriors 0 and p, a marginal increase in p (corresponding
to a more revealing signal structure) has a larger impact on the Receiver’s payoff in the case of L = 3 than
L = 1.
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the parameter configuration of our experiment, the marginal benefit of a more revealing signal

accrued to the Receiver exceeds the marginal cost suffered by the Sender only in the case

of L = 3. Efficiency-conscious Receivers may therefore become particularly demanding from

the Sender when L = 3 than when L = 1 (e.g., Charness and Rabin, 2002).

3.3 Fully Revealing Weaker Signal

We now turn to the Sender’s side. In this section, we look into one of the key theoretical

predictions that the Sender sets the weaker signal to be fully revealing (i.e. setting the weaker

posterior to be 0), corresponding to putting all the red balls in the stronger box. Starting

from this subsection, we will report results from both the Human Receiver treatment and

the two Robot Receiver Treatments.

Figure 7: Prop. of Red Balls in the Stronger Urn Over Time

By studying the human Receivers’ responses reported in Section 3.1, putting all the red

balls in the stronger box is indeed optimal in the Human Receiver treatment, in line with the

prescription by the theory of Bayesian persuasion. Figure 7 reveals that, for all treatments,

the average proportion of red balls put in the stronger box is high at the beginning and

generally increases over time. Recall, given our specification of robots’ strategies, it is optimal

for the Senders to put all the red balls in the stronger box in both the Robot Receiver

treatment and the Random Robot Receiver treatment. Figure 7 reveals that, in this respect,

Senders in both the Robot Receiver treatment and the Random Robot Receiver treatment

outperform their counterparts in the Human Receiver treatment. This phenomenon suggests

that strategic uncertainty from the Receiver side per se can hinder the learning of the optimal
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strategy. Nevertheless, even in the Human Receiver treatment, Senders can on average end

up putting more than 90% of the Red balls in the stronger box.

Table 6: Prop. of Senders Putting 90% (100%) of the Red Balls in the Stronger Urn

From Round 1 From Round 6 From Round 11 From Round 16
Treatment 1 24.29% (15.71%) 42.86% (35.71%) 52.86% (47.14%) 62.86% (51.43%)
Treatment 2 64.52% (61.29%) 77.42% (67.74%) 87.10% (67.74%) 90.32% (74.19%)
Treatment 3 71.87% (68.75%) 87.50% (78.13%) 90.62% (87.50%) 93.75% (93.75%)

At the individual level, many Senders choose to stick to putting all the Red balls in one

box until the end of the experiment once they learn to do so. Table 6 shows the proportion

of Senders who, starting from rounds 1, 6, 11, and 16 (i.e., the beginning of each quarter

of the session), persistently put at least 90% (100%) of the red balls in the stronger box

until the end of the experiment. Again, we see that the subjects in the two Robot Receiver

Treatments generally outperform those in the Human Receiver Treatment, with over 90%

of the Senders eventually putting 90% of the Red balls in one box. But even in the Human

Receiver Treatment, 15.71% of the Senders put all the red balls in the stronger box in the

first round and continue to do so throughout the experiment. More than half of the Senders

learn by round 16 to put all the red balls in the stronger urn and stick with this strategy

until the end. This suggests that for most Senders, fully revealing the weaker signal is a

normatively appealing rule, which is not difficult for them to learn within a session.

Result 5: The majority of Senders put all the red balls in the stronger box, leaving the

weaker box with blue balls only (i.e., the weaker posterior is fully revealing).

3.4 Setting Stronger Posterior Right

We now turn to how the Senders set the stronger posterior. We focus on the stronger posterior

because the weaker posterior is necessarily below 50% (recall the prior is below 50%), and

is thus generally not enough to persuade the Receiver to guess red. In fact, in our Human

Receiver treatment, where the weaker posteriors do not automatically induce a blue guess,

only 1.14% of the weaker posteriors induce a red guess.

As the strategy space is large, we first set up a benchmark by asking how a nonstrategic

Sender who simply uniformly randomizes over all the available strategies, a 41× 61 matrix

in our experiment, would set the stronger posterior. Figure 8 shows the (simulated) dis-

tribution of the stronger posterior generated by such a uniformly randomizing Sender. It is

apparent that posteriors closer to the prior (40%) are more likely to be chosen by a uniformly

randomizing Sender. Interestingly, with about a 1/3 probability, a uniformly randomizing
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Figure 8: The Distribution of the Stronger Posterior under Uniform Randomization

Sender will set the stronger posterior to be lower than 50% —a choice that is very hard

to be rationalized by any reasonable Receiver’s behavior. Therefore, whether the stronger

posterior is higher than 50% can serve as a basic rationality test for the Sender.

Figure 9 reports the empirical distribution of the stronger posterior by treatment and

L. The result for the Senders in the Robot Receiver Treatment (Treatment 2), where the

Receiver’s cutoff is set at L/(L + 1), is remarkably stark in that they almost always set

the posterior just high enough to persuade. One may argue that this is driven by some

anchoring effect as we directly tell the Senders in this treatment the cutoff posterior of the

Robot Receiver. However, in the Random Robot Treatment (Treatment 3), where the cutoff

is drawn from U(L/(L+1), L/(L+1)+0.1), the Senders generally set the stronger posterior

nearly optimally around the top of the distribution, although there is no obvious anchor

in this treatment. Thus, the results of our two Robot treatments indicate that the Senders

generally understand the importance of setting a high enough posterior to persuade the

Receiver to guess Red. They also understand that setting a high posterior has no use beyond

inducing the Receivers to guess Red.

It is clear from Figure 9 that in the Human Receiver treatment, where the Receivers’

strategies are not defined for the Senders, the stronger posterior is rarely set below 50%, with

this event occurring in only 13% (13.57%) of the games when L = 1 (L = 3).17 Moreover,

the Senders are generally responsive to the changes in the value of L, as they generally set

17Frechette et al. (2022) find that a significant proportion of the Senders in their experiment set the stronger
posterior to be lower than 50% even with ample experience. It is another indication that the subjects’ failure
of Bayesian updating plays an important role in their environment.
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Figure 9: Empirical Distribution of Stronger Posterior by Treatment and L

(a) Treatment 1, L = 1 (b) Treatment 1, L = 3

(c) Treatment 2, L = 1 (d) Treatment 2, L = 3

(e) Treatment 3, L = 1 (f) Treatment 3, L = 3

the stronger posterior higher under higher L (p < 0.01, Wilcoxon rank sum test).

However, the Senders are generally not responsive enough to changes in the value of L.

To see this, recall that, from Figure 2, to persuade most Human Receivers to guess Red, the

stronger posterior needs to be higher than 50% when L = 1 and 60% when L = 3. While

only 13% of Senders set posteriors below 50% when L = 1, about 45% of them set posteriors

below 60% when L = 3. Moreover, although some Senders set the stronger posterior at 100%,

they rarely set the stronger posterior within [80%, 100%) when L = 3, although in terms of

payoff, setting the stronger posterior in this region is close to the empirical best response.

Importantly, there is only weak evidence that Senders increase the stronger posterior

as they gain experience. To see this, we compare the stronger posterior set in the first five
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Figure 10: Persuasion Failure Rate Over Time in Human Receiver Treatment

rounds and in the last five rounds under each L. We find that, on average, the Senders

increase the average posterior by 0.02 when L = 1 (p > 0.1) and 0.03 when L = 3 (p < 0.05)

(two-sided t-test, clustered at the sender level). The magnitude of learning on the Sender

side in terms of setting the stronger posterior is thus negligible.

This systematic underprovision of information leads to frequent and persistent persuasion

failure (i.e., Blue guess under even the stronger signal). This phenomenon is striking. Recall

Figure 4 reveals that under-informing Receivers is a more costly mistake than over-informing

Receivers. In fact, When L = 3, Senders can achieve a higher (ex-ante) persuasion rate by

completely separating the balls into the two boxes (i.e., full revelation) than by setting the

stronger posterior below 60%.

Figure 10 shows how the persuasion failure rate changes over time. Clearly, the persuasion

failure rate generally stays high throughout the whole session. Moreover, the higher the L, the

more frequent the persuasion failure: while 33.14% of the stronger posteriors induce a Blue

guess when L = 1, 45.29% of the stronger posteriors induce a Blue guess when L = 3. This is

in sharp contrast to the equilibrium prediction that the stronger signal always induces a Red

guess, as well as the two Robot Receiver treatments, where persuasion failure is much rarer

(1.13% in Robot Receiver treatment and 19.37% in Random Robot Receiver treatment).

Result 6: Senders generally respond to the change of L. The vast majority of them set

the stronger posteriors either within [50%, 80%] or at 100%. They rarely set the stronger

posterior in (80%, 100%] even when L = 3. The stronger posterior is often too low for

persuasion, resulting in persistently frequent persuasion failure.

In light of the fact that most Senders in the Random Robot treatment seem to understand
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that under-informing Receivers is a more costly mistake than over-informing Receivers, the

persistently high rate of persuasion failure, especially in the case of L = 3, is puzzling.18

First, we find that the high persuasion failure rate is unlikely to be driven by those confused

Senders who are unable to properly understand the tasks at hand. The high persuasion failure

is a rather systemic pattern, as 40% of the Senders have more than half of their stronger

posteriors inducing a Blue guess. Moreover, the same behavioral pattern is also found in

one of our previous drafts (Kwon, 2020) with a different subject pool. Second, the social

preference of the Senders cannot explain the under-informing behavior of the Senders. This

is because setting the strong posterior too low for successful persuasion hurts the welfare

of both the Sender and the Receiver. Third, random decision error (e.g. Quantal Response)

cannot explain the behavioral pattern of the Senders because on one hand, they do not set

the posterior below 50%, whereas on the other hand, neither do they set the posterior within

(80%, 100%) even when doing so is close to the empirical best response19.

We turn to a fourth explanation —Sender’s optimism about the Receiver’s cutoff. From

the Robot Receiver treatment, we see that the Senders are generally aware that the optimal

strategy is to match the Receiver’s cutoff. Thus, if a Sender holds a mistaken belief that the

Receiver has a lower cutoff than she actually has, he may set his stronger posterior too low,

resulting in persuasion failure.

To formally test this explanation, we look at the Senders’ belief about the Receivers’

guesses. Recall that in our Human Receiver treatment, after the persuasion game, the Senders

are given an individual task in which they are asked to guess whether the Receiver chose

Red in some past rounds of the persuasion game. A monetary prize is awarded if and only

if their guess matches the Receiver’s actual guess in that round. Thus, the Sender’s guess

is an indicator of whether they believe that a given posterior can induce most Receivers to

guess Red.

Figure 11 compares, for each L, the guesses of those Senders whose average stronger

posterior is above the median level (”the strong Senders”) and those below the median level

(”the weak Senders”). As most Receivers actually guess Red when the posterior is higher

than 50% when L = 1 and 60% when L = 3, the optimal guess of the Senders is guessing

Red when the posterior is higher than 50% under L = 1 and 60% under L = 3. While most

Senders guess optimally under L = 1, the strong Senders are generally more pessimistic

about the Receivers’ response. A logit regression for the case L = 3 confirms that holding

the posterior probability constant, the strong Senders are less likely to guess that the Receiver

18Note that any explanation related to the Bayesian updating is automatically ruled out because the
subjects do not bear the burden of calculating the posteriors.

19See Appendix A for full description of our Quantal Response Equilibrium (QRE) estimation.
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Figure 11: Individual Decision Comparison between Strong and Weak Senders

(a) L = 1 (b) L = 3

chose Red (p < 0.1, clustered at the Sender level). This suggests that optimism can partially

explain why some Senders set the stronger posterior too weak.

4 Discussion

In summary, we find that the Senders can understand the normative appeal of fully revealing

the weaker signal, but they systematically set the stronger posterior lower than what the

Receivers require, leading to frequent persuasion failure even under the stronger signal.

The frequent persuasion failure is puzzling because the Sender can always avoid this costly

mistake by providing full information. Yet, it is a very robust phenomenon across subjects.

But when the Senders know the Receiver’s strategy exactly, the Sender can generally choose

the optimal strategy.

Although Bayesian persuasion is relatively abstract, our results suggest that its basic

strategic element, when cleanly isolated, can be easily understood by our human subjects

who presumably have little relevant knowledge. Our experimental design, which interprets

Bayesian persuasion in terms of information partition, makes such clean isolation possible

while keeping the problem interpretable. As a result, we are able to obtain sharp results and

identify some important behavioral patterns that would otherwise be difficult to detect.

Our experimental design allows for a variety of extensions based on our knowledge of the

information partition. For example, we know that we can combine two pieces of informa-

tion by taking the join of their respective information partition. Consequently, one way to
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implement competitive Bayesian Persuasion between multiple Senders is to let each Sender

choose a partition and then give the Receiver the join of the partitions. However, it must be

noted that our design is only applicable when the Receiver is supposed to know the posterior

probability exactly. For example, we cannot replicate some of the treatments of Frechette

et al. (2022) because in those treatments, the interpretation of the signals is subject to the

Sender’s manipulation, and thus a naive Receiver may not know the posterior probability

exactly.

Although our design is minimal and may exclude some interesting behavioral aspects,

we believe that as long as the strategic element under study is orthogonal to those aspects,

a minimal design like ours provides a useful starting point to understand the extent to

which the strategic element is alive. Here, we find that the strategic element of Bayesian

Persuasion is not only alive but very strong, and we expect it will also be strong in many

other extensions.
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Appendix A: Quantal Response Equilibrium (QRE)

In this section of Appendix, we present the results of Quantal Response Equilibrum (QRE)

estimation of our persuasion game (see, e.g., Goeree et al., 2016). We will show that although

the best-fitting QRE can capture some aspects of the observed behavior, it cannot explain

some important behavioral patterns that our experiment reveals.

We first lay down some definitions needed for the estimation. We define a Sender’s strat-

egy as π = (pstr, qstr) ∈ Π, where pstr and qstr denote the frequency of the stronger box and

the fraction of red balls in the stronger box, respectively. We define a Receiver’s strategy as

σ(π) = (σstr, σweak)(π) ∈ Σ, where σstr and σweak denotes whether the Receiver guesses Red

under the stronger and the weaker posterior respectively.

In QRE, each player may make mistake in his or her decisions but has a correct belief

about the other player’s mistake. The size of the Sender’s and the Receiver’s mistake is

quantified by λs and λr respectively, which are commonly known between the Sender and

the Receiver. However, because the Sender moves first, from the Receiver’s perspective, the

Sender’s decision error is irrelevant to her decision. Thus, the sequential structure of the

persuasion game allows us to estimate λs and λr separately.

QRE assumes that the probability that the Receiver plays each strategy is

Pr(σ|π, λr, L) =
exp (λrU(σ|π, L))∑
σ′ exp (λrU(σ′|π, L))

where U(σ|π, L) denotes Receiver’s ex-ante utility when she follows strategy σ when the

Sender follows strategy π under parameter L. Clearly, the probability that the Receiver

plays the optimal strategy increases in λr, and thus this parameter captures how unlikely

the Receiver makes mistake.

Given the expression of the probability that the Receiver uses each strategy, we use the

maximum likelihood estimation to find λ̂r that best fits the empirical distribution. Impor-

tantly, the Receiver’s payoff is strongly affected by her risk attitude when L = 3, thus,

instead of imposing risk neutrality on the Receiver, we also estimate L̂ that maximizes the

likelihood function when L = 3. It is easy to show that the likelihood function is concave in

both λ̂r and L̂ so that there is a unique maximizer of the likelihood function.

Figure 12 compares how the Receivers respond to each level of posterior under the best

fitting QRE and in the data under each L. We find that QRE fits the data extremely well

in most regions.20 However, when L = 1, when the posterior is between 45% and 50%, the

best fitting QRE predicts that the red guess is chosen approximately 40% of the times but in

20When L = 1, we have λ̂r = 13.52. When L = 3, we have λ̂r = 7.51 and L̂ = 1.47
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Figure 12: Receiver Response Comparison between Actual Data and Best Fitting QRE

(a) L = 1 (b) L = 3

the actual data it is chosen only approximately 10% of the times21. A key prediction of the

QRE model in our persuasion game when L = 1 is that the Receiver’s response function is

approximately symmetric around 50% because the payoff from guessing Red under a slightly

lower than 50% posterior is symmetric to that from guessing Blue under a slightly higher

than 50%. Thus, the QRE model cannot explain why the Receiver makes one type of mistake

significantly more frequently than the other.

When L = 3, after accounting for risk aversion, we find that the QRE fits the data well.

Importantly, the best fitting L̂ is 1.47, which is significantly less than the treatment variable

L. Note that the threshold likelihood ratio of L̂ = 1.47 corresponds to the threshold posterior

of 59.5%, which is close to what we find as the threshold above which most Receiver guesses

Red. For reference, when we impose L̂ to be 3, we find that the best fitting QRE has a

much lower λ̂r
22, meaning that if we impose an incorrect assumption on the Receiver’s risk

attitude, the model requires the Receiver to be significantly more irrational in order to best

fit the data.

Now that we have estimated the best fitting QRE on the Receiver’s side, we can now

turn to the estimation of λs, the Sender’s parameter. QRE assumes that the probability that

21In our data, the posterior slightly higher than 50% is much more frequent than the posterior slightly
lower than 50%. This is why the estimation puts more weight on the former region rather than the latter.

22When we impose L̂ = L = 3, we have λ̂r = 2.75.
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the Sender plays each strategy is

Pr(π|λ̂r, λs, L) =
exp (λsV (π|λ̂r, λs, L))∑
π′ exp (λsV (π′|λ̂r, λs, L))

where V (π|λ̂r, λs, L) denotes the Sender’s payoff when he follows strategy π when the Re-

ceiver is of type λ̂r under parameter L. Similar to the Receiver, the probability that the

Sender plays the optimal strategy increases in λs.

Figure 13: Sender’s Stronger Posterior Comparison between Actual Data and Best Fitting
QRE

(a) L = 1 (b) L = 3

We again use the maximum likelihood estimation to find λs that best fits the empirical

distribution of the Sender’s strategy. Figure 13 compares how the Sender sets the stronger

posterior under the best fitting QRE and in the data under each L. We find that, regardless

of L, QRE generally predicts a higher frequency of high posteriors than the actual data. In

particular, compared to the actual data, QRE puts significantly more weight on the posteriors

within the (80%, 100%) region. This is yet another reflection of the fact that over-informing

is generally a less costly mistake than under-informing. Thus, QRE model cannot explain

why the Sender sets the posterior systematically lower than what is optimal.
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Appendix B: Instructions

Instructions for Treatment 1 (Human Receiver Treatment)

Welcome and thank you for participating in this study of economic decision-making. We

expect the study to take about 90 minutes.

The instruction is simple. If you follow carefully and make good decisions, you may earn

a substantial amount of money.

This experiment consists of two stages. We will explain and provide instruction of each

stage when we reach there. Your choices in any one stage will not affect what happens to you

in the other. Therefore, we recommend that you focus on the current stage without thinking

about the later stage.

Stage 1

In this stage, you are assigned either Role 1 or Role 2, which remains fixed throughout

the study. A Role 1 will be randomly matched with a Role 2 in each round. Therefore, if you

are Role 1, it is unlikely that you are matched with the same Role 2 of the previous rounds,

and vice versa.

There will be a total of 20 rounds in this stage.

Role 2 needs to guess the color of a ball drawn from a box that contains Red and Blue

balls. If the guess is correct, Role 2 gets a positive payoff; otherwise, Role 2 gets no payoff.

Role 1 needs to provide hints to convince Role 2 to guess Red. If Role 2’s guess is Red,

no matter whether it is correct or not, Role 1 gets a positive payoff; otherwise, Role 1 gets

no payoff.

Specifically, each round proceeds as follows.

The Drawn Ball

A can contains 100 balls labeled 1, 2, . . . , 100. Out of these 100 balls, 40 balls are Red

and 60 balls are Blue.

The computer randomly draws a ball, records its label (e.g., 72), and puts it back into

the can. Note that every ball is equally likely to be drawn.

Throughout the decision-making stages, we will not tell anybody anything about the

drawn ball. In the rest of the instruction, we will call this ball “the drawn ball.”

Role 1’s Decision
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Role 1 moves first. Role 1 decides how to divide the 100 balls between two empty boxes,

Box A and Box B. Role 1 is free to divide the 100 balls between these two empty boxes in

any way.

To do this, Role 1 can simply indicate the number of Red balls and Blue balls he/she

wants to put in Box A, and the computer will do the rest.

Example: Role 1 can place 15 Red balls and 20 Blue balls in Box A. The computer will

then automatically put the rest of the balls (25 Red balls and 40 Blue balls) into Box B. The

final composition of the boxes will be as follows:

Box A: 15 Red Balls and 20 Blue Balls (35 balls in total)

Box B: 25 Red Balls and 40 Blue Balls (65 balls in total)

The following facts are worth noting.

• Role 1 does not know the color of the drawn ball.

• Role 1 cannot affect the overall chance that the drawn ball is a Red one (40% =

40/100), as the drawn ball was determined by the computer before Role 1 is asked to

act.

• One of the boxes, Box A or Box B, must contain the drawn ball no matter how Role

1 divides the 100 balls.

• As each ball is equally likely to be the drawn ball, the more balls a box contains, the

more likely that it is holding the drawn ball. In fact, the chance that a box holds the

drawn ball is proportional to the total number of balls placed inside. For example, if

there is a total of 35 balls in Box A, then the chance that it holds the drawn ball is

35%. In this case, the chance that Box B holds the drawn ball is 65%.

• As the computer has recorded the label of the drawn ball, it can tell whether the drawn

ball is contained in Box A or Box B (but no one else can tell exactly).

Role 2’s Decision

After Role 1 completes the ball division, it is Role 2’s turn to make decisions.

The computer will give Role 2 the box that contains the drawn ball (which may either

be Box A or Box B), and reveal its composition to Role 2. The other box becomes irrelevant

for the payoffs of both Roles, and is effectively thrown away.

The task of Role 2 is to form a guess about the color of the drawn ball, based on the two

pieces of facts below.
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• The drawn ball is contained in the box received.

• The numbers of Red and Blue balls in the received box are as shown by the computer.

After Role 2 has made the guess, the computer then compares it with the actual color of

the drawn ball, and computes the payoff of each role as follows.

• Role 1 gets a positive payoff if Role 2’s guess is Red.

• Role 2 gets a positive payoff if Role 2’s guess is correct.

In the experiment, before Role 2 actually receives his/her box, we ask Role 2 to form a

plan of guesses. That is, for both Box A and Box B, Role 2 needs to make a guess on the

color of the drawn ball supposing that the drawn ball is contained in that box. Specifically,

Role 2 is asked both of the following questions:

• Suppose you receive Box A, so that Box A contains the drawn ball. What is your guess

on the color of the drawn ball? —– Red/Blue

• Suppose you receive Box B, so that Box B contains the drawn ball. What is your guess

on the color of the drawn ball? —– Red/Blue

(If Role 1 does not put any ball in one of the boxes, the question for that box will be

skipped.)

As only one box can actually contain the drawn ball and only that box will actually be

given to Role 2, we will take Role 2’s guess for the received box as her actual guess.

As Role 2, when making the plan of guesses, does not know whether Box A or Box B will

eventually be received, the answer to each question above can potentially become the actual

guess, and hence relevant to the payoffs of the matched pair. We therefore recommend that

Role 2 makes the guess for each box as if it is the box to be received.

The details of payoff determination are explained below.

Payoffs

Role 1 gets 70 points whenever Role 2’s actual guess is Red, and 0 points otherwise.

Role 1’s payoff points does not depend on whether Role 2’s guess is correct or not.

Role 2 gets positive payoff points if the actual guess is the same as the color of

the drawn ball, and 0 points otherwise. Specifically, the payoff points that Role 2 receives

are determined by the following table.
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If Drawn Ball

is Red

If Drawn Ball

is Blue

Guessing Red 30 0

Guessing Blue 0 X

In words,

• If the guess is Red, and the drawn ball is Red, Role 2 gets 30 points.

• If the guess is Red, and the drawn ball is Blue, Role 2 gets 0 points.

• If the guess is Blue, and the drawn ball is Red, Role 2 gets 0 points.

• If the guess is Blue, and the drawn ball is Blue, Role 2 gets X points.

The number X in the table is 90 points for the first 10 rounds, and 30 points for the last

10 rounds.

An Example

Suppose Role 1 divides the balls as follows.

Box A: 15 Red Balls and 20 Blue Balls (35 balls in total)

Box B: 25 Red Balls and 40 Blue Balls (65 balls in total)

Box A has 35 balls and Box B has 65 balls. Therefore there is a 35% chance that the

drawn ball is in Box A, and a 65% chance that the drawn ball is in Box B.

Let’s say Role 2 receives Box A (which happens with a 35% chance). The fraction of Red

balls in Box A is 42.86% (=15/35), and the fraction of Blue balls is 57.14% (=20/35).

Having observed the composition of the box, Role 2 decides between guessing Red or Blue.

Suppose Role 2’s guess is Red. Then with a 42.86% chance, the guess is correct and Role

2 receives a positive payoff. With a 57.14% chance, the guess is incorrect and Role 2 receives

no payoff. With Role 2’s guess being Red, Role 1 gets a positive payoff of 70 points with

certainty.

Suppose Role 2’s guess is Blue. Then with a 57.14% chance, the guess is correct and Role

2 receives a positive payoff. With a 42.86% chance, the guess is incorrect and Role 2 receives

no payoff. With Role 2’s guess being Blue, Role 1 gets no payoff with certainty.

Summary
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1. A ball is randomly drawn from a total of 40 Red and 60 Blue balls, but the identity of

the drawn ball is known only to the computer.

2. Role 1 is rewarded if and only if Role 2 makes an actual guess of Red.

3. Role 2 is rewarded if and only if the guess matches the color of the drawn ball.

4. In the first step, Role 1 divides the 100 balls between Box A and Box B, without

knowing the color of the drawn ball.

• From the point of view of Role 1, the more balls a box has, the more likely that

the drawn ball is contained inside, and hence the more likely that it will be given

to Role 2. In fact, the chance that a box is received by Role 2 is proportional to

the number of balls contained inside.

5. With the knowledge of the color composition of the received box, Role 2 makes a guess

about the color of the drawn ball.

• From the point of view of Role 2, every ball in the received box is equally likely

to be the drawn ball. Therefore, the chance that the drawn ball is Red (Blue) is

equal to the fraction of Red (Blue) balls in the received box.

Monetary Payment

The monetary payment you receive for this stage is determined as follows. The computer

will randomly pick one round from the first 10 rounds, and another round from the latter

10 rounds. The sum of the payoff points that you received in these two randomly-selected

rounds will be converted to money at an exchange rate of 1 point = 1 HKD, and paid to

you. As every round may count, we recommend that you act in each round as if it is a round

that counts.
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Stage 2

In this stage, your role remains the same as the previous stage. That is, if you were Role 1

before, you will remain Role 1 in this stage. If you were Role 2 before, you will remain Role

2 in this stage. However, in this stage, there will be no interaction between Role 1 and Role

2. Each role will perform a separate task independently.

There will be a total of 20 rounds in this stage.

Role 1’s Task

In each round, Role 1’s task is to guess the choice of a Role 2 in a randomly-selected round

in the previous stage. Role 1 can receive a positive payoff if and only if the guess about

Role 2’s choice is correct. More specifically, if you are Role 1, each round proceeds as

follows.

1. The computer will randomly pick one round from the previous stage that was played

by someone else. Therefore, you were not involved in that past round, and you could

not possibly affect what happened in that past round.

2. The computer will show you the Box A and Box B prepared by Role 1 in that past

round of the previous stage. Your task is to guess what Role 2 in that round has chosen.

3. Only your guess for the box with the drawn ball counts. As you do not know which

box contains the drawn ball, we recommend that you make the guess as if it is the

box that counts. If your guess about Role 2’s choice is correct, you get a payoff of 40

points; otherwise, you get no payoff.

4. Unlike the previous stage, your decision in this stage has no effect on other participants

in any way.

Role 2’s Task

Role 2’s task in this stage is similar to that in the previous stage with one notable

difference – the decisions made will not affect any other participants in any way.

More specifically, if you are a Role 2, each round proceeds as follows.

1. The computer will randomly pick one round from the previous stage that was played

by someone else. Therefore, you were not involved in that past round, and you could

not possibly affect what happened in that past round.
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2. The computer will set up the Box A and Box B as prepared by Role 1 in that past

round of the previous stage. It will also randomly pick a drawn ball from the 100 balls

(40 Red balls and 60 Blue balls), which may either be contained in Box A or Box B.

3. The computer will give you whichever box that contains the drawn ball, and ask you

to guess its color. Your payoff is determined by the same table as the previous stage.

If Drawn Ball

is Red

If Drawn Ball

is Blue

Guessing Red 30 0

Guessing Blue 0 X

The number X in the table is 90 points for the first 10 rounds, and 30 points for the

last 10 rounds.

4. As in the previous stage, before you know which box you actually receive, we require

you to guess the color of the drawn ball for both possible cases. That is, for both Box

A and Box B, Role 2 needs to make a guess on the color of the drawn ball supposing

that the drawn ball is in that box. As only one box can actually contain the drawn

ball, we will take your guess for that box as your actual guess.

5. Unlike the previous stage, your decision in this stage has no effect on other participants

in any way.

Monetary Payment

The monetary payment you receive for this stage is determined as follows. The computer

will randomly pick one round from the first 10 rounds, and another round from the latter

10 rounds. The sum of the payoff points that you received in these two randomly-selected

rounds will be converted to money at an exchange rate of 1 point = 1 HKD, and paid to

you. As every round may count, we recommend that you act in each round as if it is a round

that counts.
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Instructions for Treatment 3 (Random Robot Receiver Treatment)

Welcome and thank you for participating in this study of economic decision-making. We

expect the study to take about 70 minutes.

The instruction is simple. If you follow carefully and make good decisions, you may earn

a substantial amount of money.

In this experiment, a robot makes a guess on the color of a ball drawn from a can filled

with Red and Blue balls.

Your task is to provide hints to convince the robot to guess that the color of the drawn

ball is Red. If the robot’s guess is Red, no matter whether it is correct or not, you get a

positive payoff ; otherwise, you get no payoff.

There are 20 rounds in this experiment. Specifically, each round goes as follows.

The Drawn Ball

A can contains 100 balls labeled 1, 2, . . . , 100. Out of these 100 balls, 40 balls are Red

and 60 balls are Blue.

The computer randomly draws a ball, records its label (e.g., 72), and puts it back into

the can. Note that every ball is equally likely to be drawn.

Throughout the decision-making stages, we will not tell anybody anything about the

drawn ball. In the rest of the instruction, we will call this ball “the drawn ball.”

Your Decision

You move first. You decide how to divide the 100 balls between two empty boxes, Box A

and Box B. You are free to divide the 100 balls between these two empty boxes in any way.

To do this, you can simply indicate the number of Red balls and Blue balls you want to

put in Box A, and the computer will do the rest.

Example: You can place 15 Red balls and 20 Blue balls in Box A. The computer will then

automatically put the rest of the balls (25 Red balls and 40 Blue balls) into Box B. The final

composition of the boxes will be as follows:

Box A: 15 Red Balls and 20 Blue Balls (35 balls in total)

Box B: 25 Red Balls and 40 Blue Balls (65 balls in total)

The following facts are worth noting.

• You do not know the color of the drawn ball.
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• You cannot affect the overall chance that the drawn ball is a Red one (40% = 40/100),

as the drawn ball was determined by the computer before you are asked to act.

• One of the boxes, Box A or Box B, must contain the drawn ball no matter how you

divide the 100 balls.

• As each ball is equally likely to be the drawn ball, the more balls a box contains, the

more likely that it is holding the drawn ball. In fact, the chance that a box holds the

drawn ball is proportional to the total number of balls placed inside. For example, if

there is a total of 35 balls in Box A, then the chance that it holds the drawn ball is

35%. In this case, the chance that Box B holds the drawn ball is 65%.

• As the computer has recorded the label of the drawn ball, the computer can tell whether

the drawn ball is contained in Box A or Box B (but no one else can tell exactly).

Robot’s Decision

After you complete the ball division, it is the robot’s turn to make decisions.

The computer will give the robot the box that contains the drawn ball (which may

either be Box A or Box B), and reveal its composition to the robot. The other box becomes

irrelevant, and is effectively thrown away.

The robot then forms a guess about the color of the drawn ball, based on the two pieces

of facts below.

• The drawn ball is contained in the box received.

• The numbers of Red and Blue balls in the received box are as shown by the computer.

The robot’s decision follows a fixed rule as follows.

If Fraction of Red Balls Larger than X, Robot guesses Red

If Fraction of Red Balls Smaller than X, Robot guesses Blue

If Fraction of Red Balls Equal to X, Robot randomizes

In other words,

• When the fraction of Red balls in the box received is larger than X, the robot guesses

Red.

• When the fraction of Red balls in the box received is smaller than X, the robot guesses

Blue.
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• When the fraction of Red balls in the box received is equal to X, the robot guesses

randomly.

In the first 10 rounds, the number X is between 50% and 60%, with each value in the

interval equally likely. The number X is drawn afresh in each round.

In the latter 10 rounds, the number X is between 75% and 85%, with each value in

the interval equally likely. The number X is drawn afresh in each round.

Payoffs

You get a payoff of 80 points whenever the robot’s guess is Red, and 0 points otherwise.

Your payoff points do not depend on whether the robot’s guess is correct or not.

Examples

Example 1: Suppose you divide the balls as follows.

Box A: 15 Red Balls and 20 Blue Balls (35 balls in total)

Box B: 25 Red Balls and 40 Blue Balls (65 balls in total)

Box A has 35 balls and Box B has 65 balls. Therefore there is a 35% chance that the

drawn ball is in Box A, and a 65% chance that the drawn ball is in Box B.

Let’s say the robot receives Box A (which happens with a 35% chance). The fraction of

Red balls in Box A is 42.86% (=15/35), and the fraction of Blue balls is 57.14% (=20/35).

Having observed the composition of the box, the robot decides between guessing Red or

Blue. As the fraction of Red balls in Box A is 42.86%, the robot guesses Blue in both cases

of X between 50%-60% and 75%-85%.

Example 2: Suppose you divide the balls as follows.

Box A: 22 Red Balls and 18 Blue Balls (40 balls in total)

Box B: 18 Red Balls and 42 Blue Balls (60 balls in total)

Box A has 40 balls and Box B has 60 balls. Therefore there is a 40% chance that the

drawn ball is in Box A, and a 60% chance that the drawn ball is in Box B.

Let’s say the robot receives Box A (which happens with a 40% chance). The fraction of

Red balls in Box A is 55% (=22/40), and the fraction of Blue balls is 45% (=18/40).

Having observed the composition of the box, the robot decides between guessing Red or

Blue. As the fraction of Red balls in Box A is 55%, the robot guesses Red if its X value

happens to be between 50% and 55%. This happens with a chance about one-half in the first

10 rounds (which has X between 50% - 60%), and zero chance in the last 10 rounds (which

has X between 75% - 85%).
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Summary

• A ball is randomly drawn from a total of 40 Red and 60 Blue balls, but the identity of

the drawn ball is known only to the computer.

• You are rewarded if and only if the robot makes a guess of Red.

• In the first step, you divide the 100 balls between Box A and Box B, without knowing

the color of the drawn ball.

• From your point of view, the more balls a box has, the more likely that the drawn ball

is contained inside, and hence the more likely that it will be given to the robot. In fact,

the chance that a box is received by the robot is proportional to the number of balls

contained inside.

• In the second step, with the knowledge of the color composition of the received box,

the robot makes a guess about the color of the drawn ball following a fixed rule:

It guesses

Red

when the fraction of Red balls in the box received is

larger than X

Blue smaller than X

Red/Blue equal to X

The number X in the robot’s rule is 50%-60% for the first 10 rounds, and 75%-85%

for the last 10 rounds.

Monetary Payment

The monetary payment you receive for this experiment is determined as follows. The com-

puter will randomly pick one round from the first 10 rounds, and another round from the

latter 10 rounds. The sum of the payoff points that you received in these two randomly-

selected rounds will be converted to money at an exchange rate of 1 point = 1 HKD, and

paid to you. As every round may count, we recommend that you act in each round as if it

is a round that counts.
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